XA规范是X/Open组织定义的分布式事务处理(DTP,Distributed Transaction Processing)标准,XA规范描述了全局的TM与局部的RM之间的接口,几乎所有主流的数据库都对XA规范提供了支持
XA是规范,目前主流数据库都实现了这种规范,实现的原理都是基于两阶段提交。
正常情况:
异常情况:
一阶段:
事务协调者通知每个事务参与者执行本地事务
本地事务执行完成后报告事务执行状态给事务协调者,此时事务不提交,继续持有数据库锁
二阶段:
事务协调者基于一阶段的报告来判断下一步操作
如果一阶段都成功,则通知所有事务参与者,提交事务
如果一阶段任意一个参与者失败,则通知所有事务参与者回滚事务
Seata对原始的XA模式做了简单的封装和改造,以适应自己的事务模型,基本架构如图:
RM一阶段的工作:
① 注册分支事务到TC
② 执行分支业务sql但不提交
③ 报告执行状态到TC
TC二阶段的工作:
TC检测各分支事务执行状态
a.如果都成功,通知所有RM提交事务
b.如果有失败,通知所有RM回滚事务
RM二阶段的工作:
接收TC指令,提交或回滚事务
XA模式的优点
事务的强制一致性,满足ACID原则
常用数据库都支持,实现简单,没有代码侵入
XA模式的缺点
因为一阶段需要锁定数据库资源,等待二阶段结束才释放,性能较差
依赖关系型数据库实现事务
1、修改application.yml文件(每个参与事务的微服务都要修改),开启XA模式
seata: data-source-proxy-mode: XA
2、给发起全局事务的入口方法添加@GlobalTransactional
注解
3、重启服务
AT模式同样是分阶段提交的事务模型,不过弥补了XA模型中资源锁定周期过程的缺陷
基本流程图:
阶段一RM的工作:
注册分支事务
记录undo-log(数据快照)
执行业务sql并提交
报告事务状态
阶段二提交时RM的工作:
删除undo-log即可
阶段二回滚时RM的工作:
根据undo-log恢复数据到更新前
XA模式一阶段不提交事务,锁定资源;AT模式一阶段直接提交,不锁定资源。
XA模式依赖数据库机制实现回滚;AT模式利用数据快照实现数据回滚。
XA模式强一致;AT模式最终一致
在多并发访问AT模式的分布式事务时,有可能出现脏写问题
解决思路就是引入了全局锁的概念。在释放DB锁之前,先拿到全局锁。避免同一时刻有另外一个事务来操作当前数据。
AT模式的优点:
一阶段直接提交书屋,释放数据库资源,性能比较好
利用全局锁实现读写隔离
没有代码侵入,框架自动完成回滚和提交
AT模式的缺点:
两阶段之间属于软状态,属于最终一致
框架的快照功能会影响性能,单比XA模式要好很多
AT模式中的快照生成、回滚等动作都是由框架自动完成,没有任何代码侵入,因此实现非常简单。
只不过,AT模式需要一个表来记录全局锁、另一张表来记录数据快照undo_log。
1、导入数据库表,记录全局锁
seata数据库导入lock_table
表
DROP TABLE IF EXISTS `lock_table`;CREATE TABLE `lock_table` ( `row_key` varchar(128) CHARACTER SET utf8 COLLATE utf8_general_ci NOT NULL, `xid` varchar(96) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL, `transaction_id` bigint(20) NULL DEFAULT NULL, `branch_id` bigint(20) NOT NULL, `resource_id` varchar(256) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL, `table_name` varchar(32) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL, `pk` varchar(36) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL, `gmt_create` datetime NULL DEFAULT NULL, `gmt_modified` datetime NULL DEFAULT NULL, PRIMARY KEY (`row_key`) USING BTREE, INDEX `idx_branch_id`(`branch_id`) USING BTREE) ENGINE = InnoDB CHARACTER SET = utf8 COLLATE = utf8_general_ci ROW_FORMAT = Compact;SET FOREIGN_KEY_CHECKS = 1;
undo_log表导入到微服务关联的数据库
DROP TABLE IF EXISTS `undo_log`;CREATE TABLE `undo_log` ( `branch_id` bigint(20) NOT NULL COMMENT 'branch transaction id', `xid` varchar(100) CHARACTER SET utf8 COLLATE utf8_general_ci NOT NULL COMMENT 'global transaction id', `context` varchar(128) CHARACTER SET utf8 COLLATE utf8_general_ci NOT NULL COMMENT 'undo_log context,such as serialization', `rollback_info` longblob NOT NULL COMMENT 'rollback info', `log_status` int(11) NOT NULL COMMENT '0:normal status,1:defense status', `log_created` datetime(6) NOT NULL COMMENT 'create datetime', `log_modified` datetime(6) NOT NULL COMMENT 'modify datetime', UNIQUE INDEX `ux_undo_log`(`xid`, `branch_id`) USING BTREE) ENGINE = InnoDB CHARACTER SET = utf8 COLLATE = utf8_general_ci COMMENT = 'AT transaction mode undo table' ROW_FORMAT = Compact;
2、修改application.yml文件,将事务模式修改为AT模式即可
seata: data-source-proxy-mode: AT # 默认就是AT
3、重启服务测试
TCC模式与AT模式非常相似,每阶段都是独立事务,不同的是TCC通过人工编码来实现数据恢复。需要实现三个方法:
Try:资源的检测和预留;
Confirm:完成资源操作业务;要求 Try 成功 Confirm 一定要能成功。
Cancel:预留资源释放,可以理解为try的反向操作
举例,一个扣减用户余额的业务。假设账户A原来余额是100,需要余额扣减30元。
阶段一( Try ):检查余额是否充足,如果充足则冻结金额增加30元,可用余额扣除30
初始余额:
余额充足,可以冻结:
此时,总金额 = 冻结金额 + 可用金额,数量依然是100不变。事务直接提交无需等待其它事务。
阶段二(Confirm):假如要提交(Confirm),则冻结金额扣减30
确认可以提交,不过之前可用金额已经扣减过了,这里只要清除冻结金额就好了:
此时,总金额 = 冻结金额 + 可用金额 = 0 + 70 = 70元
阶段二(Canncel):如果要回滚(Cancel),则冻结金额扣减30,可用余额增加30
需要回滚,那么就要释放冻结金额,恢复可用金额:
TCC模式的每个阶段是做什么的?
Try:资源检查和预留
Confirm:业务执行和提交
Cancel:预留资源的释放
TCC的优点是什么?
一阶段完成直接提交事务,释放数据库资源,性能好
相比AT模型,无需生成快照,无需使用全局锁,性能最强
不依赖数据库事务,而是依赖补偿操作,可以用于非事务型数据库
TCC的缺点是什么?
有代码侵入,需要人为编写try、Confirm和Cancel接口,太麻烦
软状态,事务是最终一致
需要考虑Confirm和Cancel的失败情况,做好幂等处理
1、空回滚
当某分支事务的try阶段阻塞时,可能导致全局事务超时而触发二阶段的cancel操作。在未执行try操作时先执行了cancel操作,这时cancel不能做回滚,就是空回滚
执行cancel操作时,应当判断try是否已经执行,如果尚未执行,则应该空回滚。
2、业务悬挂
对于已经空回滚的业务,之前被阻塞的try操作恢复,继续执行try,就永远不可能confirm或cancel ,事务一直处于中间状态,这就是业务悬挂。
执行try操作时,应当判断cancel是否已经执行过了,如果已经执行,应当阻止空回滚后的try操作,避免悬挂
解决空回滚和业务悬挂问题,必须要记录当前事务状态,是在try、还是cancel?
这里我们定义一张表:
SET NAMES utf8mb4;SET FOREIGN_KEY_CHECKS = 0;-- ------------------------------ Table structure for account_freeze_tbl-- ----------------------------DROP TABLE IF EXISTS `account_freeze_tbl`;CREATE TABLE `account_freeze_tbl` ( `xid` varchar(128) CHARACTER SET utf8 COLLATE utf8_general_ci NOT NULL, `user_id` varchar(255) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL, `freeze_money` int(11) UNSIGNED NULL DEFAULT 0, `state` int(1) NULL DEFAULT NULL COMMENT '事务状态,0:try,1:confirm,2:cancel', PRIMARY KEY (`xid`) USING BTREE) ENGINE = InnoDB CHARACTER SET = utf8 COLLATE = utf8_general_ci ROW_FORMAT = COMPACT;-- ------------------------------ Records of account_freeze_tbl-- ----------------------------SET FOREIGN_KEY_CHECKS = 1;
其中:
xid:是全局事务id
freeze_money:用来记录用户冻结金额
state:用来记录事务状态
那此时,我们的业务开怎么做呢?
Try业务:
记录冻结金额和事务状态到account_freeze表
扣减account表可用金额
Confirm业务
根据xid删除account_freeze表的冻结记录
Cancel业务
修改account_freeze表,冻结金额为0,state为2
修改account表,恢复可用金额
如何判断是否空回滚?
cancel业务中,根据xid查询account_freeze,如果为null则说明try还没做,需要空回滚
如何避免业务悬挂?
try业务中,根据xid查询account_freeze ,如果已经存在则证明Cancel已经执行,拒绝执行try业务
接下来,改造account-service,利用TCC实现余额扣减功能
package cn.itcast.account.service;import io.seata.rm.tcc.api.BusinessActionContext;import io.seata.rm.tcc.api.BusinessActionContextParameter;import io.seata.rm.tcc.api.LocalTCC;import io.seata.rm.tcc.api.TwoPhaseBusinessAction;@LocalTCCpublic interface AccountTCCService { @TwoPhaseBusinessAction(name = "deduct",commitMethod = "confirm",rollbackMethod = "cancel") void deduct(@BusinessActionContextParameter(paramName = "userId") String userId, @BusinessActionContextParameter(paramName = "money") int money); boolean confirm(BusinessActionContext ctx); boolean cancel(BusinessActionContext ctx);}
package cn.itcast.account.service.impl;import cn.itcast.account.entity.AccountFreeze;import cn.itcast.account.mapper.AccountFreezeMapper;import cn.itcast.account.mapper.AccountMapper;import cn.itcast.account.service.AccountTCCService;import io.seata.core.context.RootContext;import io.seata.rm.tcc.api.BusinessActionContext;import lombok.extern.slf4j.Slf4j;import org.springframework.beans.factory.annotation.Autowired;import org.springframework.stereotype.Service;import org.springframework.transaction.annotation.Transactional;@Service@Slf4jpublic class AccountTCCServiceImpl implements AccountTCCService { @Autowired private AccountMapper accountMapper; @Autowired private AccountFreezeMapper freezeMapper; @Override @Transactional public void deduct(String userId, int money) { // 0.获取事务id String xid = RootContext.getXID(); // 1.扣减可用余额 accountMapper.deduct(userId, money); // 2.记录冻结金额,事务状态 AccountFreeze freeze = new AccountFreeze(); freeze.setUserId(userId); freeze.setFreezeMoney(money); freeze.setState(AccountFreeze.State.TRY); freeze.setXid(xid); freezeMapper.insert(freeze); } @Override public boolean confirm(BusinessActionContext ctx) { // 1.获取事务id String xid = ctx.getXid(); // 2.根据id删除冻结记录 int count = freezeMapper.deleteById(xid); return count == 1; } @Override public boolean cancel(BusinessActionContext ctx) { // 0.查询冻结记录 String xid = ctx.getXid(); AccountFreeze freeze = freezeMapper.selectById(xid); // 1.恢复可用余额 accountMapper.refund(freeze.getUserId(), freeze.getFreezeMoney()); // 2.将冻结金额清零,状态改为CANCEL freeze.setFreezeMoney(0); freeze.setState(AccountFreeze.State.CANCEL); int count = freezeMapper.updateById(freeze); return count == 1; }}
Saga模式是Seata提供的长事务解决方案。也分为两个阶段:
一阶段:直接提交本地事务
二阶段:成功则什么都不做;失败则通过编写补偿业务来回滚
在 Saga 模式下,分布式事务内有多个参与者,每一个参与者都是一个冲正补偿服务,需要用户根据业务场景实现其正向操作和逆向回滚操作。
分布式事务执行过程中,依次执行各参与者的正向操作,如果所有正向操作均执行成功,那么分布式事务提交。如果任何一个正向操作执行失败,那么分布式事务会去退回去执行前面各参与者的逆向回滚操作,回滚已提交的参与者,使分布式事务回到初始状态。
优点:
事务参与者可以基于事件驱动实现异步调用,吞吐高
一阶段直接提交事务,无锁,性能好
不用编写TCC中的三个阶段,实现简单
缺点:
软状态持续时间不确定,时效性差
没有锁,没有事务隔离,会有脏写